
What is Elasticsearch? 
You know, for search (and analysis) 

Elasticsearch is the distributed search and analytics engine at the heart of the 
Elastic Stack. Logstash and Beats facilitate collecting, aggregating, and 
enriching your data and storing it in Elasticsearch. Kibana enables you to 
interactively explore, visualize, and share insights into your data and manage 
and monitor the stack. Elasticsearch is where the indexing, search, and 
analysis magic happens. 

Elasticsearch provides near real-time search and analytics for all types of 
data. Whether you have structured or unstructured text, numerical data, or 
geospatial data, Elasticsearch can efficiently store and index it in a way that 
supports fast searches. You can go far beyond simple data retrieval and 
aggregate information to discover trends and patterns in your data. And as 
your data and query volume grows, the distributed nature of Elasticsearch 
enables your deployment to grow seamlessly right along with it. 

While not every problem is a search problem, Elasticsearch offers speed and 
flexibility to handle data in a wide variety of use cases: 

 Add a search box to an app or website 
 Store and analyze logs, metrics, and security event data 
 Use machine learning to automatically model the behavior of your data in real 

time 
 Use Elasticsearch as a vector database to create, store, and search vector 

embeddings 
 Automate business workflows using Elasticsearch as a storage engine 
 Manage, integrate, and analyze spatial information using Elasticsearch as a 

geographic information system (GIS) 
 Store and process genetic data using Elasticsearch as a bioinformatics 

research tool 

 



We’re continually amazed by the novel ways people use search. But whether 
your use case is similar to one of these, or you’re using Elasticsearch to tackle 
a new problem, the way you work with your data, documents, and indices in 
Elasticsearch is the same. 

Information out: search and analyze 
While you can use Elasticsearch as a document store and retrieve documents 
and their metadata, the real power comes from being able to easily access 
the full suite of search capabilities built on the Apache Lucene search engine 
library. 

Elasticsearch provides a simple, coherent REST API for managing your cluster 
and indexing and searching your data. For testing purposes, you can easily 
submit requests directly from the command line or through the Developer 
Console in Kibana. From your applications, you can use the Elasticsearch 
client for your language of choice: Java, JavaScript, Go, .NET, PHP, Perl, Python 
or Ruby. 

Searching your data 

The Elasticsearch REST APIs support structured queries, full text queries, and 
complex queries that combine the two. Structured queries are similar to the 
types of queries you can construct in SQL. For example, you could search 
the gender and age fields in your employee index and sort the matches by 
the hire_date field. Full-text queries find all documents that match the query 
string and return them sorted by relevance—how good a match they are for 
your search terms. 

In addition to searching for individual terms, you can perform phrase 
searches, similarity searches, and prefix searches, and get autocomplete 
suggestions. 

Have geospatial or other numerical data that you want to search? 
Elasticsearch indexes non-textual data in optimized data structures that 
support high-performance geo and numerical queries. 

https://www.elastic.co/guide/en/elasticsearch/client/index.html
https://www.elastic.co/guide/en/elasticsearch/client/index.html


You can access all of these search capabilities using Elasticsearch’s 
comprehensive JSON-style query language (Query DSL). You can also 
construct SQL-style queries to search and aggregate data natively inside 
Elasticsearch, and JDBC and ODBC drivers enable a broad range of third-
party applications to interact with Elasticsearch via SQL. 

Analyzing your data 

Elasticsearch aggregations enable you to build complex summaries of your 
data and gain insight into key metrics, patterns, and trends. Instead of just 
finding the proverbial “needle in a haystack”, aggregations enable you to 
answer questions like: 

 How many needles are in the haystack? 
 What is the average length of the needles? 
 What is the median length of the needles, broken down by manufacturer? 
 How many needles were added to the haystack in each of the last six months? 

You can also use aggregations to answer more subtle questions, such as: 

 What are your most popular needle manufacturers? 
 Are there any unusual or anomalous clumps of needles? 

Because aggregations leverage the same data-structures used for search, 
they are also very fast. This enables you to analyze and visualize your data in 
real time. Your reports and dashboards update as your data changes so you 
can take action based on the latest information. 

What’s more, aggregations operate alongside search requests. You can 
search documents, filter results, and perform analytics at the same time, on 
the same data, in a single request. And because aggregations are calculated 
in the context of a particular search, you’re not just displaying a count of all 
size 70 needles, you’re displaying a count of the size 70 needles that match 
your users' search criteria—for example, all size 70 non-stick 
embroidery needles. 

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/sql-overview.html


But wait, there’s more 

Want to automate the analysis of your time series data? You can 
use machine learning features to create accurate baselines of normal 
behavior in your data and identify anomalous patterns. With machine 
learning, you can detect: 

 Anomalies related to temporal deviations in values, counts, or frequencies 
 Statistical rarity 
 Unusual behaviors for a member of a population 

And the best part? You can do this without having to specify algorithms, 
models, or other data science-related configurations. 

 

Scalability and resilience: clusters, nodes, 
and shards 
Elasticsearch is built to be always available and to scale with your needs. It 
does this by being distributed by nature. You can add servers (nodes) to a 
cluster to increase capacity and Elasticsearch automatically distributes your 
data and query load across all of the available nodes. No need to overhaul 
your application, Elasticsearch knows how to balance multi-node clusters to 
provide scale and high availability. The more nodes, the merrier. 

How does this work? Under the covers, an Elasticsearch index is really just a 
logical grouping of one or more physical shards, where each shard is actually 
a self-contained index. By distributing the documents in an index across 
multiple shards, and distributing those shards across multiple nodes, 
Elasticsearch can ensure redundancy, which both protects against hardware 
failures and increases query capacity as nodes are added to a cluster. As the 
cluster grows (or shrinks), Elasticsearch automatically migrates shards to 
rebalance the cluster. 

https://www.elastic.co/guide/en/machine-learning/8.12/ml-ad-overview.html


There are two types of shards: primaries and replicas. Each document in an 
index belongs to one primary shard. A replica shard is a copy of a primary 
shard. Replicas provide redundant copies of your data to protect against 
hardware failure and increase capacity to serve read requests like searching 
or retrieving a document. 

The number of primary shards in an index is fixed at the time that an index is 
created, but the number of replica shards can be changed at any time, 
without interrupting indexing or query operations. 

 

It depends… 

There are a number of performance considerations and trade offs with 
respect to shard size and the number of primary shards configured for an 
index. The more shards, the more overhead there is simply in maintaining 
those indices. The larger the shard size, the longer it takes to move shards 
around when Elasticsearch needs to rebalance a cluster. 

Querying lots of small shards makes the processing per shard faster, but 
more queries means more overhead, so querying a smaller number of larger 
shards might be faster. In short…it depends. 

As a starting point: 

 Aim to keep the average shard size between a few GB and a few tens of 
GB. For use cases with time-based data, it is common to see shards in 
the 20GB to 40GB range. 

 Avoid the gazillion shards problem. The number of shards a node can 
hold is proportional to the available heap space. As a general rule, the 
number of shards per GB of heap space should be less than 20. 

The best way to determine the optimal configuration for your use case is 
through testing with your own data and queries. 

https://www.elastic.co/elasticon/conf/2016/sf/quantitative-cluster-sizing


In case of disaster 

A cluster’s nodes need good, reliable connections to each other. To provide 
better connections, you typically co-locate the nodes in the same data center 
or nearby data centers. However, to maintain high availability, you also need 
to avoid any single point of failure. In the event of a major outage in one 
location, servers in another location need to be able to take over. The answer? 
Cross-cluster replication (CCR). 

CCR provides a way to automatically synchronize indices from your primary 
cluster to a secondary remote cluster that can serve as a hot backup. If the 
primary cluster fails, the secondary cluster can take over. You can also use 
CCR to create secondary clusters to serve read requests in geo-proximity to 
your users. 

Cross-cluster replication is active-passive. The index on the primary cluster is 
the active leader index and handles all write requests. Indices replicated to 
secondary clusters are read-only followers. 

Care and feeding 

As with any enterprise system, you need tools to secure, manage, and 
monitor your Elasticsearch clusters. Security, monitoring, and administrative 
features that are integrated into Elasticsearch enable you to use Kibana as a 
control center for managing a cluster. Features like downsampling and index 
lifecycle management help you intelligently manage your data over time. 
 

https://www.elastic.co/guide/en/kibana/8.12/introduction.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/downsampling.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-lifecycle-management.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-lifecycle-management.html

